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PART-A
             Answer all the questions:                                                   


(10 X 2 = 20)



1.   Define a stochastic process with an example.


[image: image1.wmf]

2.   Define a process with independent increments.


3.   Show that communication between two states i and j satisfies transitive relation.


4.   Define (i) transcient state (ii) recurrent state.


5.   Define a Markov process.


6.    Obtain the PGF of a Poisson process.


7.   Define a renewal function. What is the relation between a renewal function and the    

      
      distribution functions of inter occurrence times?


8.   When do you say that 
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9.   What is a branching process?                  


10. What is the relationship between Poisson process and exponential distribution?

PART-B
            Answer any 5 questions:                                                      


     (5 X 8 = 40)


11. State and prove Chapman – Kolmogorov equation for a discrete time Markov chain.


12. Obtain the equation for 
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  in a Yule process with X(0) = 1.


13. Let 
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 be i.i.d random variables with mean 0 and variance
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Show that  
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 is a martingale with respect to 
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14. Show that the matrix of transition probabilities together with the initial distribution 

      
completely specifies a Markov chain.


15. Show that the renewal function satisfies 
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16. Establish the relationship between Poisson process and Binomial distribution.

17. Obtain the stationary distribution for the Markov chain having transition probability 

      
        matrix
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18. If a process has stationary independent increments and finite mean show that 
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PART-C
                 Answer any 2 questions:                                                 


(2 X 20 = 40)


19. a)  State and prove the necessary and sufficient condition required by a state to be 


recurrent.

    
      b.)  Verify whether state 0 is recurrent in a symmetric random walk in three dimensions. 










       (10+10)


20. a)  State the postulates of a Poisson process. Obtain the expression for
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      b.)  Obtain the distribution for waiting time of k arrivals for a Poisson process.                                 










       (15+5)


21. a)  Obtain the generating function for a branching process. Hence obtain the mean and 

variance.

 
      b)  Let 
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  be the probability that an individual in a generation generates k  

            
off springs. If 
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 obtain the probability of extinction.                         

                                                                                                                             (15+5)


22. a.)  Obtain the renewal function corresponding to the lifetime density.
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      b.)  Show that the likelihood ratio forms a martingale.

     
      c.)  Let 
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 show that 
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  is a sub martingale with respect to
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